• Tiếng Việt

citc-hou

728x90-ads

  • Trang chủ
  • Giáo Dục
    • Hóa
  • Ẩm thực
  • Công Nghệ
  • Phong thủy
  • Sức khỏe
  • Tử vi
You are here: Home / Giáo Dục / 7 lưu ý khi học công thức Pitago bạn không nên bỏ qua

7 lưu ý khi học công thức Pitago bạn không nên bỏ qua

Tháng Chín 19, 2023 Tháng Chín 19, 2023 hoangduong

Công thức pitago là một trong những kiến thức hình học quan trọng nhất mà bất cứ học sinh nào cũng cần phải nắm vững. Định lý pitago cho rằng: trong 1 tam giác vuông, bình phương của cạnh huyền (đối diện với góc vuông) bằng với tổng bình phương của hai cạnh góc vuông .Hãy cùng với Dự báo thời tiết 3 ngày tìm hiểu về định lý Pitago ngay sau đây nhé.

Có thể bạn quan tâm
  • Những cách tính diện tích hình tam giác
  • Nhiệt dung
  • Cách tính nửa chu vi hình chữ nhật có ví dụ trực quan dễ hiểu
  • Oxit là gì? Công thức, tính chất hoá học và phân loại Oxit?
  • CÔNG THỨC TÍNH NHIỆT LƯỢNG

Công thức pitago là gì?

Công thức pitago

Định lý Pytago là một liên hệ cơ bản trong hình học Euclid giữa ba cạnh trong một tam giác vuông. Định lý pitago cho rằng: trong 1 tam giác vuông, bình phương của cạnh huyền (đối diện với góc vuông) bằng với tổng bình phương của hai cạnh góc vuông. Định lý có thể được viết thành một phương trình liên hệ độ dài của các cạnh a, b và c, và thường gọi là công thức Pytago: c2=a2+b2 (trong đó c là độ dài của cạnh huyền, a,b lần lượt là độ dài của 2 cạnh góc vuông). Như thế, trong bất cứ tam giác vuông nào thì bình phương của cạnh huyền cũng bằng tổng bình phương của hai cạnh góc vuông. Theo như định lý cho biết, 2 cạnh góc vuông của tam giác được kí hiệu là a và b, còn cạnh huyền được kí hiệu là c. Ta luôn có phương trình công thức pitago như sau:

a2+b2=c2 (c là độ dài của cạnh huyền, a và b là độ dài của hai cạnh góc vuông hay còn được gọi là cạnh kề). Qua đó, ta có công thức để tính cạnh huyền tam giác vuông như sau: c=√(a²+b²) (c là cạnh huyền, a và b là độ dài của 2 cạnh tam giác vuông)

Cách chứng minh công thức pitago

Chúng ta có thể chứng minh định lý Pitago đơn giản qua hình sau:

định lý pitago đảo

Tại hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)2

Xem thêm : Fabrication of Ag/AgBr/Ag3VO4 composites with high visible light photocatalytic performance

Trong mỗi hình lại có 4 tam giác vuông bằng nhau và có diện bằng nhau là 1/2(a.b). Do đó diện tích phần khoảng trắng 2 hình sẽ bằng nhau. Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của a, b nên ta sẽ có: c2= a2+b2

Định lý pitago đảo

Khái niệm

Nếu như 1 tam giác có bình phương một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đó chính là tam giác vuông. Công thức Pitago đảo rất phổ biến cũng như có nhiều ứng dụng thực tiễn.

Phương pháp chứng minh định lý pitago đảo

Gọi ABC là một tam giác với các cạnh a, b, và c, với a2+b2=c2. Dựng một tam giác thứ hai có cạnh bằng a và b và góc vuông được tạo giữa chúng. Theo như định lý Pitago thuận, cạnh huyền tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác đều có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do đó, hai tam giác này phải bằng nhau. Suy ra, góc giữa các cạnh a và b ở tam giác đầu tiên phải là một góc vuông.

Để chứng minh định lý pitago đảo ở trên, chúng ta sử dụng chính định lý Pytago. Hoặc, cũng có thể chứng minh định lý đảo mà không cần dùng định lý thuận.

Một ứng dụng của định lý Pytago đảo đó là cách xác định đơn giản một tam giác có phải là tam giác vuông hay không, hay là tam giác nhọn, tam giác tù. Gọi c là cạnh dài nhất của tam giác và có a + b > c (nếu không thì sẽ không tồn tại tam giác vì đây là bất đẳng thức tam giác). Các phát biểu sau đây là đúng:

  • Nếu a2 + b2 = c2, thì là tam giác vuông.
  • Nếu a2 + b2 > c2 thì là tam giác nhọn.
  • Nếu a2 + b2 < c2, thì là tam giác tù.

Các dạng khác của định lý pitago

Như chúng tôi đã đề cập, nếu như ký hiệu c là chiều dài của cạnh huyền, a và b là chiều dài của hai cạnh kề thì ta sẽ có biểu thức của phương trình Pitago như sau: a =b +c.

Nếu như đã biết chiều dài a, b, chúng ta có thể tính cạnh huyền c bằng công thức: c = √(a +b ).

Nếu như biết được độ dài của cạnh huyền và cạnh kề (a hoặc b) thì công thức để tính độ dài của cạnh kề còn lại sẽ như sau: a = √(c – b ) hoặc b = √(c – a ).

Xem thêm : Tìm hiểu thạch cao là gì ? Ứng dụng của thạch cao trong đời sống

Công thức Pitago cho liên hệ các cạnh của một tam giác vuông theo một cách đơn giản, do vậy, nếu biết được chiều dài của hai cạnh bất kỳ thì chúng ta sẽ tìm được chiều dài của cạnh còn lại. Một hệ quả khác của định lý Pytago là trong bất cứ tam giác vuông nào, cạnh huyền sẽ luôn luôn lớn hơn hai cạnh kia, nhưng sẽ bé hơn tổng của hai cạnh. Chúng ta có thể ứng dụng định lý Pytago để tìm cạnh của một tam giác vuông, hoặc tính khoảng cách của 2 điểm trong không gian thực khi biết được tọa độ của chúng dưới dạng (x, y).

7 lưu ý khi học công thức pitago

phương trình pitago

Khi học định lý Pytago, để có thể nắm chắc và áp dụng thuần thục trong quá trình làm bài tập, các bạn cần lưu ý một số điều sau:

  • Cạnh huyền của một tam giác vuông luôn luôn:

– Cắt ngang mà không đi qua góc vuông

– Là cạnh dài nhất của tam giác vuông

– Cạnh huyền còn được gọi là C trong định lý Pitago

  • Khi tính toán, bạn luôn cần phải kiểm tra lại kết quả.
  • Khi nhìn vào hình, bạn sẽ dễ dàng nhận ra cạnh huyền bởi vì đó là cạnh dài nhất, đối diện góc lớn nhất. Cạnh ngắn nhất sẽ đối diện góc nhỏ nhất của tam giác.
  • Chúng ta chỉ có thể tính được cạnh thứ 3 khi biết độ dài của 2 cạnh còn lại trong tam giác vuông
  • Nếu một tam giác không phải là tam giác vuông, chúng ta không thể áp dụng định lý pitago mà sẽ tính được khi biết thêm các thông tin ngoài chiều dài 2 cạnh.
  • Các bạn nên vẽ tam giác ra để có thể dễ dàng gán giá trị một cách chính xác cho các cạnh a, b, c.
  • Nếu như chỉ biết được số đo của một cạnh, chúng ta không thể sử dụng định lý pitago để tính mà sẽ phải dùng đến hàm lượng giác (sin, cos, tan) hoặc sử dụng tỉ lệ 30-60-90 / 45-45-90.

Xem thêm: Công thức diện tích hình bình hành – toán lớp 10

Dự báo thời tiết 3 ngày hy vọng rằng, những thông tin về công thức pitago mà chúng tôi giới thiệu đến các bạn hôm nay sẽ giúp cho các bạn đạt được những điểm số cao hơn trong bộ môn hình học. Đừng bỏ lỡ những bài viết tiếp theo của chúng tôi nhé

Nguồn: https://citc-hou.edu.vn
Danh mục: Giáo Dục

Bài viết liên quan

Cách tính năng suất lao động của doanh nghiệp đơn giản nhất
Cách tính năng suất lao động của doanh nghiệp đơn giản nhất
Công thức & Cách điều chế nước Javen (ĐÚNG CHUẨN)
Công thức & Cách điều chế nước Javen (ĐÚNG CHUẨN)
Quặng apatit công thức có như thế nào? Tính chất
Công thức Diện tích hình Thoi & Cách tính đơn giản 2023
Công thức Diện tích hình Thoi & Cách tính đơn giản 2023
Chuyển động thẳng đều: Lý thuyết và bài tập minh họa
Chuyển động thẳng đều: Lý thuyết và bài tập minh họa
Momen lực là gì? Công thức tính momen lực?
Momen lực là gì? Công thức tính momen lực?
Dạng 1: Biến đổi chu kỳ, tần số con lắc đơn dao động điều hòa
Áp suất khí quyển là gì? Công thức tính áp suất khí quyển | Vật lý lớp 8
Áp suất khí quyển là gì? Công thức tính áp suất khí quyển | Vật lý lớp 8

Chuyên mục: Giáo Dục

728x90-ads

Previous Post: « Bài trước
Next Post: Bài sau »

Primary Sidebar

Recent Posts

  • Các loại chế phẩm hồng cầu và sử dụng khi nào?
  • Sinh năm 1998 mệnh gì? Tuổi Mậu Dần hợp tuổi nào, màu gì?
  • Hướng dẫn sử dụng nồi cơm điện cao tần Hitachi đúng cách
  • (không có tiêu đề)
  • Lịch âm hôm nay 2023, xem lịch âm 14/8/2023. Lịch vạn niên ngày 14 tháng 8 năm 2023

Bài viết nổi bật

Các loại chế phẩm hồng cầu và sử dụng khi nào?

Các loại chế phẩm hồng cầu và sử dụng khi nào?

Tháng Mười 1, 2023

Sinh năm 1998 mệnh gì? Tuổi Mậu Dần hợp tuổi nào, màu gì?

Sinh năm 1998 mệnh gì? Tuổi Mậu Dần hợp tuổi nào, màu gì?

Tháng Mười 1, 2023

Hướng dẫn sử dụng nồi cơm điện cao tần Hitachi đúng cách

Hướng dẫn sử dụng nồi cơm điện cao tần Hitachi đúng cách

Tháng Mười 1, 2023

(no title)

Tháng Mười 1, 2023

Lịch âm hôm nay 2023, xem lịch âm 14/8/2023. Lịch vạn niên ngày 14 tháng 8 năm 2023

Lịch âm hôm nay 2023, xem lịch âm 14/8/2023. Lịch vạn niên ngày 14 tháng 8 năm 2023

Tháng Mười 1, 2023

Sinh Năm 2013 Mệnh Gì? Quý Tỵ 2013 Hợp Với Những Tuổi Nào?

Sinh Năm 2013 Mệnh Gì? Quý Tỵ 2013 Hợp Với Những Tuổi Nào?

Tháng Mười 1, 2023

Hướng dẫn công thức làm trân châu phô mai tại nhà thơm ngon, béo ngậy

Hướng dẫn công thức làm trân châu phô mai tại nhà thơm ngon, béo ngậy

Tháng Mười 1, 2023

C6H6 + H2 → C6H12

Tháng Mười 1, 2023

(no title)

Tháng Mười 1, 2023

15 Fakten zu H2SO4 + Ba: Was, wie man ausgleicht & FAQs

Tháng Mười 1, 2023

Tuổi Giáp Thìn hợp với màu gì và kỵ màu sắc nào nhất ?

Tháng Mười 1, 2023

20 Dấu hiệu nhận biết mang thai con trai hay con gái Sớm, Chuẩn Nhất

20 Dấu hiệu nhận biết mang thai con trai hay con gái Sớm, Chuẩn Nhất

Tháng Mười 1, 2023

Sinh 2001 mệnh gì, tuổi gì, cung gì, hợp màu gì?

Sinh 2001 mệnh gì, tuổi gì, cung gì, hợp màu gì?

Tháng Mười 1, 2023

(no title)

Tháng Mười 1, 2023

Bí quyết làm nước dùng phở tại nhà ngon như hàng

Bí quyết làm nước dùng phở tại nhà ngon như hàng

Tháng Mười 1, 2023

Cho chim cu gáy ăn gì, nuôi chim cu gáy như thế nào để mau nổi?

Cho chim cu gáy ăn gì, nuôi chim cu gáy như thế nào để mau nổi?

Tháng Mười 1, 2023

Xem ngày tốt khai trương mở cửa hàng buôn bán năm 2023 chuẩn nhất 

Xem ngày tốt khai trương mở cửa hàng buôn bán năm 2023 chuẩn nhất 

Tháng Mười 1, 2023

Hướng dẫn 3 cách bật chế độ theo dõi trên Facebook bằng điện thoại, máy tính đơn giản nhất

Tháng Mười 1, 2023

Bảng gọi tên Ankan

Bảng gọi tên Ankan

Tháng Mười 1, 2023

Tuổi Mậu Ngọ hợp màu gì năm 2021 để gặp nhiều may mắn?

Tháng Mười 1, 2023

Footer

Về chúng tôi

Trang thông tin tự động cập nhật Google chuyên cung cấp kiến thức về tất cả lĩnh vực

Website chúng tôi là web site cập nhật nội dung tự động từ google.com. Nếu có vấn đề gì về bản quyền vui lòng liên hệ: [email protected]

  • Chính sách bảo mật
  • Điều khoản sử dụng
  • Liên hệ

Địa Chỉ

Số 25B, Ngõ 120, Phố Yên Lãng, Quận Đống Đa, TP. Hà Nội
Điện thoại: 024. 3562 6898 | Hotline: 1900 6218 | Email: [email protected]

| Email: [email protected]

Share: facebook.com/citc-hou.edu.vn

Map

Bản quyền © 2023